Refinement of a Bias- Correction Procedure for the Weighted Likelihood Estimator of Ability
نویسندگان
چکیده
In practical applications of item response theory (IRT), item parameters are usually estimated first from a calibration sample. After treating these estimates as fixed and known, ability parameters are then estimated. However, the statistical inferences based on the estimated abilities can be misleading if the uncertainty of the item parameter estimates is ignored. Instead, estimated item parameters can be regarded as covariates measured with error. Along the line of this measurement-error-model approach, asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of ability were derived by Zhang, Xie, Song, and Lu (2007). In this paper, we propose an estimator of an ability parameter based on the asymptotic formula of the WLE. A simulation study shows that the new estimator effectively reduces the bias of the MLE or WLE of ability caused by the uncertainty of the item parameter estimates not taken into account.
منابع مشابه
Determination of optimized sediment rating equation and its relationship with physical characteristics of watershed in semiarid regions: A case study of Pol-Doab watershed, Iran
Managers always consider the precise estimation of sediments in watersheds due to various conditions, such assoil and water resources management, construction, infrastructure and economical and social issues. In this condition,an optimized determination of sediment rating equation (typical method until now for sediment yield estimation) isessential to investigate sediment yield in rivers. In th...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملA comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data
This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...
متن کاملWeighted Least Squares Approximate Restricted Likelihood Estimation for Vector Autoregressive Processes
We derive a weighted least squares approximate restricted likelihood estimator for a kdimensional pth order autoregressive model with intercept, for which exact likelihood optimization is generally infeasible due to the parameter space which is complicated and highdimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007